Skip to content
Amazon Bedrock

Configure Amazon Bedrock

Amazon Bedrock is a fully managed foundation model service provided by AWS, integrating top-tier models from Anthropic Claude, Meta Llama, Amazon Titan, and more. It offers enterprise-grade security, privacy protection, and flexible model selection, supporting pay-as-you-go pricing.

1. Obtain AWS Bedrock Access Credentials

1.1 Visit AWS Console

Visit AWS Management Console and log in: https://console.aws.amazon.com/

Visit AWS Console

1.2 Enter Bedrock Service

  1. Enter Bedrock in the search box
  2. Click Amazon Bedrock
  3. Select your region (recommended us-east-1)

Enter Bedrock ServiceEnter Bedrock Service

1.3 Request Model Access

  1. Click Model access in the left menu
  2. Click Manage model access
  3. Check the models you want to use (e.g., Claude 3.5 Sonnet, Llama 3.1, Mistral Large)
  4. Click Request model access
  5. Wait for approval (usually within a few minutes)

Request Model Access

1.4 Create IAM User and Access Keys

  1. Visit IAM console: https://console.aws.amazon.com/iam/
  2. Click Users > Add user
  3. Enter username (e.g., cuemate-bedrock)
  4. Select Access key - Programmatic access
  5. Attach policy: AmazonBedrockFullAccess
  6. Complete creation and record Access Key ID and Secret Access Key

Create API KeyCreate Short-term API KeyCreate Long-term API KeyCreate Long-term API Key

2. Configure Bedrock Model in CueMate

2.1 Enter Model Settings Page

After logging into CueMate, click Model Settings in the dropdown menu in the upper right corner.

Enter Model Settings

2.2 Add New Model

Click the Add Model button in the upper right corner.

Click Add Model

2.3 Select Amazon Bedrock Provider

In the popup dialog:

  1. Provider Type: Select Amazon Bedrock
  2. After clicking, it will automatically proceed to the next step

Select Amazon Bedrock

2.4 Fill in Configuration Information

Fill in the following information on the configuration page:

Basic Configuration

  1. Model Name: Give this model configuration a name (e.g., Bedrock Claude 4.5 Sonnet)
  2. API Key: Paste the long-term API key obtained from AWS Bedrock
  3. AWS Region: Select region (e.g., us-east-1, default value)
  4. Model Version: Select or enter the model ID you want to use. Common models include:
    • anthropic.claude-sonnet-4-5-20250929-v1:0: Claude 4.5 Sonnet (latest, max output 64K)
    • anthropic.claude-haiku-4-5-20251001-v1:0: Claude 4.5 Haiku (fast, max output 64K)
    • anthropic.claude-opus-4-1-20250805-v1:0: Claude 4.1 Opus (high performance, max output 32K)
    • anthropic.claude-3-5-sonnet-20241022-v2:0: Claude 3.5 Sonnet (max output 64K)
    • amazon.nova-pro-v1:0: Amazon Nova Pro (multimodal, max output 8K)
    • meta.llama3-1-405b-instruct-v1:0: Llama 3.1 405B (ultra-large scale, max output 8K)
    • mistral.mistral-large-2407-v1:0: Mistral Large (high performance, max output 8K)

Fill in Basic Configuration

Advanced Configuration (Optional)

Expand the Advanced Configuration panel to adjust the following parameters:

CueMate Interface Adjustable Parameters:

  1. Temperature: Controls output randomness

    • Range: 0-2 (depending on model series)
    • Recommended Value: 0.7
    • Function: Higher values produce more random and creative output, lower values produce more stable and conservative output
    • Model Ranges:
      • Claude series: 0-1
      • Llama series: 0-2
      • Mistral series: 0-1
      • DeepSeek series: 0-2
      • Amazon Titan series: 0-1
    • Usage Suggestions:
      • Creative writing/brainstorming: 0.8-1.2 (based on model upper limit)
      • Regular conversation/Q&A: 0.6-0.8
      • Code generation/precise tasks: 0.3-0.5
  2. Max Tokens: Limits single output length

    • Range: 256 - 65536 (depending on model)
    • Recommended Value: 8192
    • Function: Controls the maximum word count of model's single response
    • Model Limits:
      • Claude 4.5 Sonnet/Haiku: max 65536 (64K tokens)
      • Claude 4 Opus: max 32768 (32K tokens)
      • Claude 4 Sonnet: max 65536 (64K tokens)
      • Claude 3.7 Sonnet: max 65536 (64K tokens)
      • Claude 3.5 Sonnet: max 65536 (64K tokens)
      • Claude 3.5 Haiku: max 8192 (8K tokens)
      • Claude 3 Opus/Sonnet/Haiku: max 4096 (4K tokens)
      • Amazon Nova all series: max 8192 (8K tokens)
      • Amazon Titan all series: max 8192 (8K tokens)
      • Meta Llama all series: max 8192 (8K tokens)
      • Mistral all series: max 8192 (8K tokens)
      • DeepSeek all series: max 8192 (8K tokens)
      • AI21 Jamba series: max 4096 (4K tokens)
      • Cohere Command series: max 4096 (4K tokens)
      • Qwen all series: max 8192 (8K tokens)
    • Usage Suggestions:
      • Short Q&A: 1024-2048
      • Regular conversation: 4096-8192
      • Long text generation: 16384-32768
      • Ultra-long documents: 65536 (Claude 4.5/4/3.7/3.5 Sonnet only)

Advanced Configuration

Other Advanced Parameters Supported by AWS Bedrock API:

Although CueMate's interface only provides temperature and max_tokens adjustments, if you call AWS Bedrock directly through the API, different model series also support the following advanced parameters:

Anthropic Claude Series Parameters

  1. top_p (nucleus sampling)

    • Range: 0-1
    • Default Value: 1
    • Function: Samples from the smallest candidate set with cumulative probability reaching p
    • Relationship with temperature: Usually only adjust one of them
    • Usage Suggestions:
      • Maintain diversity: 0.9-0.95
      • More conservative output: 0.7-0.8
  2. top_k

    • Range: 0-500
    • Default Value: 250
    • Function: Samples from the k candidates with highest probability
    • Usage Suggestions:
      • More diverse: 300-500
      • More conservative: 50-150
  3. stop_sequences (stop sequence)

    • Type: String array
    • Default Value: ["\n\nHuman:"]
    • Function: Stops when generated content contains specified string
    • Maximum Quantity: 4
    • Example: ["###", "User:", "\n\n"]

Meta Llama Series Parameters

  1. top_p (nucleus sampling)

    • Range: 0-1
    • Default Value: 0.9
    • Function: Samples from the smallest candidate set with cumulative probability reaching p
  2. top_k

    • Range: 1-500
    • Default Value: 50
    • Function: Samples from the k candidates with highest probability

Amazon Titan Series Parameters

  1. topP (nucleus sampling)

    • Range: 0-1
    • Default Value: 1
    • Function: Samples from the smallest candidate set with cumulative probability reaching p
  2. stopSequences (stop sequence)

    • Type: String array
    • Function: Stops when generated content contains specified string
    • Example: ["User:", "###"]

Mistral Series Parameters

  1. top_p (nucleus sampling)

    • Range: 0-1
    • Default Value: 1
    • Function: Samples from the smallest candidate set with cumulative probability reaching p
  2. top_k

    • Range: 0-200
    • Default Value: 50
    • Function: Samples from the k candidates with highest probability

AWS Bedrock General Features:

  1. stream

    • Type: Boolean
    • Default Value: false
    • Function: Enables streaming return, returning as it generates
    • In CueMate: Handled automatically, no manual setting required
  2. guardrails (safety guardrails)

    • Type: Object
    • Function: Configure AWS Bedrock Guardrails for content filtering
    • Usage Scenario: Enterprise-level security compliance requirements
    • Example:
      json
      {
        "guardrailIdentifier": "your-guardrail-id",
        "guardrailVersion": "1"
      }
ScenarioModel Seriestemperaturemax_tokenstop_ptop_k
Creative writingClaude0.8-0.94096-81920.95300
Code generationClaude0.3-0.52048-40960.9100
Q&A systemClaude0.71024-20480.9250
Complex reasoningClaude Opus0.7327680.9250
Long text generationClaude Sonnet0.7655360.9250
Fast responseClaude Haiku0.640960.9200
Large-scale reasoningLlama 3.1 405B0.781920.950
Multimodal tasksNova Pro0.781921.0-

2.5 Test Connection

After filling in the configuration, click the Test Connection button to verify if the configuration is correct.

Test Connection

If the configuration is correct, it will display a success message and return a model response example.

Test Success

If the configuration is incorrect, it will display test error logs, and you can view specific error information through log management.

2.6 Save Configuration

After a successful test, click the Save button to complete the model configuration.

Save Configuration

3. Use Model

Through the dropdown menu in the upper right corner, enter the system settings interface and select the model configuration you want to use in the Large Model Provider section.

After configuration, you can select to use this model in functions such as interview training and question generation, or you can individually select the model configuration for a specific interview in the interview options.

Select Model

4. Supported Model List

CueMate supports all mainstream large models on the AWS Bedrock platform, covering 70+ models from 10+ providers. Below are representative models from each series:

4.1 Anthropic Claude Series

No.Model NameModel IDMax OutputUse Case
1Claude 4.5 Sonnetanthropic.claude-sonnet-4-5-20250929-v1:064K tokensLatest generation, general scenarios, high-performance reasoning
2Claude 4.5 Haikuanthropic.claude-haiku-4-5-20251001-v1:064K tokensFast response, high throughput
3Claude 4.1 Opusanthropic.claude-opus-4-1-20250805-v1:032K tokensComplex reasoning, deep analysis
4Claude 4 Opusanthropic.claude-opus-4-20250514-v1:032K tokensHigh-quality output
5Claude 4 Sonnetanthropic.claude-sonnet-4-20250514-v1:064K tokensBalanced performance and cost
6Claude 3.7 Sonnetanthropic.claude-3-7-sonnet-20250219-v1:064K tokensEnhanced general model
7Claude 3.5 Sonnet v2anthropic.claude-3-5-sonnet-20241022-v2:064K tokensGeneral scenarios, high performance
8Claude 3.5 Sonnet v1anthropic.claude-3-5-sonnet-20240620-v1:064K tokensGeneral scenarios
9Claude 3.5 Haikuanthropic.claude-3-5-haiku-20241022-v1:08K tokensFast response
10Claude 3 Opusanthropic.claude-3-opus-20240229-v1:04K tokensComplex reasoning
11Claude 3 Sonnetanthropic.claude-3-sonnet-20240229-v1:04K tokensBalanced performance
12Claude 3 Haikuanthropic.claude-3-haiku-20240307-v1:04K tokensLightweight tasks

4.2 Amazon Nova Series

No.Model NameModel IDMax OutputUse Case
1Nova Premieramazon.nova-premier-v1:08K tokensFlagship multimodal model
2Nova Proamazon.nova-pro-v1:08K tokensHigh-performance multimodal processing
3Nova Liteamazon.nova-lite-v1:08K tokensLightweight multimodal tasks
4Nova Microamazon.nova-micro-v1:08K tokensUltra-lightweight scenarios
5Nova Sonicamazon.nova-sonic-v1:08K tokensFast response

4.3 Amazon Titan Series

No.Model NameModel IDMax OutputUse Case
1Titan Premieramazon.titan-text-premier-v1:08K tokensEnterprise applications
2Titan Expressamazon.titan-text-express-v18K tokensFast response
3Titan Liteamazon.titan-text-lite-v18K tokensLightweight tasks

4.4 Meta Llama Series

No.Model NameModel IDMax OutputUse Case
1Llama 4 Scout 17Bmeta.llama4-scout-17b-instruct-v1:08K tokensNew generation medium-scale model
2Llama 4 Maverick 17Bmeta.llama4-maverick-17b-instruct-v1:08K tokensNew generation high-performance model
3Llama 3.3 70Bmeta.llama3-3-70b-instruct-v1:08K tokensEnhanced large-scale reasoning
4Llama 3.2 90Bmeta.llama3-2-90b-instruct-v1:08K tokensLarge-scale reasoning
5Llama 3.2 11Bmeta.llama3-2-11b-instruct-v1:08K tokensMedium-scale tasks
6Llama 3.2 3Bmeta.llama3-2-3b-instruct-v1:08K tokensLightweight tasks
7Llama 3.2 1Bmeta.llama3-2-1b-instruct-v1:08K tokensUltra-lightweight
8Llama 3.1 405Bmeta.llama3-1-405b-instruct-v1:08K tokensUltra-large scale reasoning
9Llama 3.1 70Bmeta.llama3-1-70b-instruct-v1:08K tokensLarge-scale tasks
10Llama 3.1 8Bmeta.llama3-1-8b-instruct-v1:08K tokensStandard tasks
11Llama 3 70Bmeta.llama3-70b-instruct-v1:08K tokensClassic large-scale model
12Llama 3 8Bmeta.llama3-8b-instruct-v1:08K tokensClassic standard model

4.5 Mistral AI Series

No.Model NameModel IDMax OutputUse Case
1Pixtral Large 2502mistral.pixtral-large-2502-v1:08K tokensMultimodal large model
2Mistral Large 2407mistral.mistral-large-2407-v1:08K tokensHigh-performance scenarios
3Mistral Large 2402mistral.mistral-large-2402-v1:08K tokensGeneral scenarios
4Mistral Small 2402mistral.mistral-small-2402-v1:08K tokensLightweight and efficient
5Mixtral 8x7Bmistral.mixtral-8x7b-instruct-v0:14K tokensMixture of experts model
6Mistral 7Bmistral.mistral-7b-instruct-v0:28K tokensLightweight tasks

4.6 AI21 Labs Series

No.Model NameModel IDMax OutputUse Case
1Jamba 1.5 Largeai21.jamba-1-5-large-v1:04K tokensLarge-scale hybrid architecture
2Jamba 1.5 Miniai21.jamba-1-5-mini-v1:04K tokensLightweight hybrid architecture

4.7 Cohere Series

No.Model NameModel IDMax OutputUse Case
1Command R+cohere.command-r-plus-v1:04K tokensEnhanced command model
2Command Rcohere.command-r-v1:04K tokensStandard command model

4.8 DeepSeek Series

No.Model NameModel IDMax OutputUse Case
1DeepSeek R1deepseek.r1-v1:08K tokensReasoning optimized version
2DeepSeek V3deepseek.v3-v1:08K tokensLatest generation model

4.9 Qwen Series

No.Model NameModel IDMax OutputUse Case
1Qwen 3 Coder 480Bqwen.qwen3-coder-480b-a35b-v1:08K tokensUltra-large scale code generation
2Qwen 3 235Bqwen.qwen3-235b-a22b-2507-v1:08K tokensUltra-large scale general reasoning
3Qwen 3 Coder 30Bqwen.qwen3-coder-30b-a3b-v1:08K tokensCode generation specialized
4Qwen 3 32Bqwen.qwen3-32b-v1:08K tokensStandard general model

4.10 OpenAI Series

No.Model NameModel IDMax OutputUse Case
1GPT-OSS 120Bopenai.gpt-oss-120b-1:04K tokensOpen-source GPT large model
2GPT-OSS 20Bopenai.gpt-oss-20b-1:04K tokensOpen-source GPT medium model

Notes:

  • All models above require requesting access permissions in the AWS Bedrock console before use
  • Different models have different pricing, please refer to AWS Bedrock Pricing
  • Actual maximum output depends on the Max Tokens parameter you set in CueMate configuration
  • Some models may only be available in specific AWS regions, it's recommended to use us-east-1 for best model coverage

5. Common Issues

5.1 Model Access Not Authorized

Symptom: Model access denied prompt

Solution:

  1. Check model access status in Bedrock console
  2. Confirm that model access has been requested and obtained
  3. Wait for approval (some models may require 1-2 business days)

5.2 Insufficient IAM Permissions

Symptom: Permission error prompt

Solution:

  1. Confirm that IAM user has attached AmazonBedrockFullAccess policy
  2. Check if access keys are correct
  3. Verify that region settings match the model's available region

5.3 Region Not Supported

Symptom: Service not available in current region prompt

Solution:

  1. Use regions that support Bedrock (recommended us-east-1 or us-west-2)
  2. Modify region code in API URL
  3. Confirm that the selected model is available in that region

5.4 Quota Limit

Symptom: Exceeds request quota prompt

Solution:

  1. Check quota usage in Bedrock console
  2. Request to increase TPM (tokens per minute) or RPM (requests per minute) limits
  3. Optimize request frequency

Released under the GPL-3.0 License.